
Towards millions of communicating threads

Hoang-Vu Dang
Department of Computer

Science
University of Illinois at
Urbana-Champaign

hdang8@illinois.edu

Marc Snir
Department of Computer

Science
University of Illinois at
Urbana-Champaign
snir@illinois.edu

William Gropp
Department of Computer

Science
University of Illinois at
Urbana-Champaign

wgropp@illinois.edu

ABSTRACT
We explore in this paper the advantages that accrue from
avoiding the use of wildcards in MPI. We show that, with
this change, one can e�ciently support millions of concur-
rently communicating light-weight threads using send-receive
communication.

CCS Concepts
•Networks!Network algorithms; •Computing method-
ologies ! Parallel algorithms; •Computer systems
organization ! Multicore architectures;

Keywords
Message Passing Interface, MPI, runtime system, communi-
cation, concurrent execution, multi-threading

1. INTRODUCTION
The first version of the Message Passing Interface (MPI)

was designed more than twenty years ago [16]. The design
was influenced by the existing message-passing formalisms,
such as CSP [24], the practice of then extant message-passing
libraries, and the needs of scalable parallel computers at
the time. This resulted in fairly complex rules for match-
ing sends to receives: MPI matches sends to receives using
values for communicator, sender rank and tag; the receive
operation can specify a wildcard value for sender rank and
tag. Sends and receives must be matched in order: If a
receive posted at A can match two distinct sends from B,
then the receive will be paired with the older send; and if
a send matches two distinct receives, it will be paired with
the older receive. Finally, the implementation must handle
sends that occur before a matching receive is posted, as well
as those that occur in the reverse order.

Since communication was relatively slow, and the commu-
nication protocol was largely executed in software, the ad-
ditional software overhead of a more complex protocol was

Euro MPI Sept 26th–28th, 2016

ACM ISBN 123-4567-24-567/08/06.

DOI: 10.475/123 4

not a significant issue. It also balanced against the advan-
tage of supporting the practice of di↵erent message-passing
libraries. Most importantly, MPI-1 targeted single threaded
processes, since computers at the time used single core pro-
cessors. MPI support for multithreaded processes appeared
only in MPI-2 [20].

The situation has changed a lot in the last twenty years:
Computer nodes can now have hundreds of concurrent hard-
ware threads; modern adapters can support a significant
fraction of the communication stack in hardware or firmware,
while throughput-oriented cores execute the MPI library
code more slowly. Programmers have shifted to the use of
hybrid parallelism: Shared memory parallelism, e.g., with
OpenMP for intranode, and message-passing parallelism for
internode. However, MPI calls are executed only in sequen-
tial sections of the OpenMP code, and MPI is used in fun-
neled mode, with all MPI calls being executed by one thread.
Indeed, we could not find significant application codes with
concurrent MPI calls. This constraint results in less e�cient
OpenMP code with more frequent serialization points.

One reason for this state of a↵airs is that the support for
multithreaded MPI is still imperfect. The latest version of
Open MPI still does not provide stable support of MPI_-
THREAD_MULTIPLE [44]. Several studies have reported sig-
nificant overhead for performing MPI calls concurrently on
many threads [22, 6]. This is, in part, an engineering issue:
MPICH provided thread-safety via a coarse-grain lock which
essentially serialized all MPI code. The research to replace
coarse-grain locking is still ongoing [7, 6, 4], but progress
is slow because the support for multithreading comes at
the expense of single thread performance (which is what
benchmarks measure). For example, there are a significant
number of global objects shared by the executing threads.
Global objects that implement stacks, queues or hash tables
can be replaced with concurrent data structures, and others
might be protected with finer-grain locks. However, finer
grain locks and concurrent data structures have higher over-
heads that add to the critical path length and reduce the
performance of single-threaded applications.

The semantics of matching sends to receives complicates
the design of e�cient support for MPI_THREAD_MULTIPLE.
The simplest mechanism for matching sends to receives in
the right order is to use a linked list for posted receives and
a linked list for early arriving (unexpected) sends. When a
message arrives, it is paired with the first matching receive
in the posted receive list; if none is found, it is appended
to unexpected send list. Symmetrically, when a receive is
posted, it is paired with the first matching send in the un-

expected send list; if none is found, it is appended to the
posted receive list. With an increasing number of threads,
there can be a larger number of concurrent sends or receives,
hence longer lists are searched sequentially and concurrently
updated; the updates must be atomic – leading to higher
contention or more complex protocols.

Various attempts have been made to minimize this bot-
tleneck by partitioning the range of communicator, sender
and tag values (and using distinct lists for each partition).
This is easy for communicators, but the use of wildcards
complicates the approach: One either must insert wildcard
receives in multiple queues, or maintain a separate queue
for wildcard receives that needs to be searched concurrently
with the regular one (see discussion in [18], where a partial
solution is provided). An alternative approach is to relax the
restriction of MPI semantics. For example, the MPI forum
is currently discussing a proposal that would enable pro-
grammers to disable wildcards or relax ordering semantics,
for some communicators [35].

Another impediment to the e�cient support of MPI_-
THREAD_MULTIPLE is the lack of integration between the MPI
library and the thread library. Consider a thread that ex-
ecutes a blocking MPI call, such as MPI_RECV or MPI_WAIT,
the thread may yield and should be rescheduled when an ap-
propriate communication completes. The MPI library can
track, for each blocked thread, which communication event
makes the thread runnable again. However, there is no sim-
ple way of passing this information to the scheduler. The
thread library will wake up threads irrespective of the status
of the communication they are waiting for; the thread will
check some flag and yield again, if the communication is not
complete. This is not a problem if most of the time only one
thread is blocked, but can be very ine�cient if the number
of blocked threads is large.

MPI needs to evolve so as to support e�cient concurrent
communication from a large number of threads. This can
be done by a combination of changes in the MPI implemen-
tation and relaxations of the MPI semantics. The evolution
needs to be guided by a clear understanding of the trade-o↵s
involved, hence this paper presents a first step in this direc-
tion. We study how e�ciently we can support send-receive
with more limited MPI send-receive semantics. This can be
used both to provide a more e�cient send-receive layer to
applications that can accept the restrictions we impose, and
to quantify the cost of supporting richer semantics. This
bottom-up strategy provides insight on the minimal number
of cache misses that are necessary in send-receive commu-
nication. The protocol we propose is simple enough to be
implemented in hardware.

The main result of this paper is that, if wildcard receives
are avoided, the performance di↵erence between MPI_THREAD_-
SINGLE and MPI_THREAD_MULTIPLE largely disappears. Fur-
thermore, communication performance does not deteriorate,
even with many thousands of concurrently communicating
threads.

The main ingredients of our e�cient message-passing run-
time are

• A light-weight thread scheduler using a bit-vector that
requires a single write for marking a thread as runnable.

• A constant time overhead algorithm for MPI point-
to-point communication utilizing a specially designed
concurrent hash-table.

• A resource-aware and locality-aware concurrent mem-
ory pool for packet management.

• An MPI runtime design for scaling up to million com-
municating threads.

Our paper is organized as follows. The next section de-
scribes the simplified send-receive model that we target and
introduces our runtime design. We present our implemen-
tation details and optimization in Section 3. Section 4 dis-
cusses experiment and results. Section 5 gives an overview
of some related work. Section 6 addresses some the unan-
swered questions in our work. Finally Section 7 concludes
our study and discusses future work.

2. RUNTIME ARCHITECTURE

2.1 Restricted Send-Receive Model
We focus in this paper on the exchange of messages that

are sent from and received into contiguous bu↵ers with match-
ing size; the handling of datatypes would be done by a layer
atop this basic communication layer. We assume that sends
and receives are matched using a key k (in MPI, this is the
<communicator, sender, tag> triplet), and do not support
wildcards. Furthermore, we assume that each send can be
matched by exactly one receive, so that ordering is a moot
issue. We shall discuss in Section 6 how we can relax these
assumptions; the only important one is the prohibition of
wildcard receives.

We focus on performance-critical operations, namely sends
and receives; the creation of communicators or of datatypes
is not (yet) addressed. We also ignore, for the time being,
one-sided operations.

We assume a light-weight thread library, where thread
scheduling does not involve the kernel; the scheduler is not
required to satisfy fairness conditions.

2.2 High-Level System Design
We propose an implementation of message-passing based

on the following assumptions:

• Large number of concurrently communicating threads.
Threads are lightweight; they are scheduled by a user-
space scheduler that understands synchronization ob-
jects. The number of light-weight threads may be sig-
nificantly higher than the number of physical threads,
and over-decomposition may be used to hide commu-
nication latency.

• Large number of cores; it is possible to dedicate one or
more cores to communication.

• The Network Interface Controller (NIC) can be ac-
cessed in user space; it has its own routing tables, in
order to translate ranks in MPI COMM WORLD to
physical node addresses; it has page tables, in order to
translate virtual addresses to physical addresses. We
consider in our work InfiniBand adapters, but the de-
sign should port to other adapters.

• We consider only x86 64 architeture; however, the tech-
nique is general enough to port to other architecture
that supports atomic exchange and atomic bit manip-
ulation.

Comm Server

handler_tbl

device_cqs

Concurrent
HashTable

requestrequestrequests

access access

Concurrent
Packet Pool

packetspacketspackets

alloc/free

NIC (Infiniband)

post_* / poll / mem_reg

device_memalloc/free

post_send

Scheduling
Table

wait/signal wait/signal

Thread
scheduler

threadthreadthreads

worker

Figure 1: MPI Runtime Architecture for multi-threaded executions

Figure 1 shows the overall architecture of our described
runtime system. We use a dedicated kernel thread as a com-
munication server. This communication server executes all
the communication protocol that is asynchronous w.r.t. the
communicating workers, such as polling and handling the
rendezvous protocol. Ideally, the communication server logic
could be executed directly by the NIC. As the results in Sec-
tion 4 show, one single-threaded communication server can
support a large number of communicating worker threads.
We plan to explore in future work the use of multithreaded
communication servers.

The workers executeUser Level Threads (ULT) (aka tasks).
These are managed by a ULT scheduler. The scheduler is
simply a function invoked when a ULT completes or yields.
An MPI blocking call will block a ULT; the ULT scheduler
will schedule another ULT on that worker. We assume in
this paper that the association of ULTs to workers is fixed:
ULTs are not migrated once they started executing. We
discuss in Section 6 how one can remove this constraint.

The communication server and the workers share three
data structures. Our simple design allows optimizations to
be focused on these three critical shared data structures and
operations on those:

• A hash table that is used to match sends and receives.

• A scheduling table that is used to mark which threads
are runnable.

• A packet pool for packets posted to the NIC.

The hash table stores both unexpected incoming messages
and outstanding receives. Since we assume there are no
wildcards, we can hash by key (<communicator, sender,
tag>). Furthermore, our assumptions imply that each com-
munication will involve one insert in the hash-table, when no
matching is found, and one delete, when a match is found.
The insert is for the first occurring operation (either a re-
ceive or an unexpected send); the delete is for the second
occurring operation of the send-receive pair.
The scheduling table is used by the communication server

to mark a ULT as runnable when a communication opera-
tions it is waiting for has completed (it is also used for thread
synchronization).

The packet pool supports two basic operations, namely
alloc and free, which obtain and return a packet from/to
the pool respectively.

2.3 Algorithms and Protocol details
The shared hash table H stores items that consist of a

<key,value> pair < k, v >. The hash table supports one
operation only, defined as follows

access(k, v) =

8
>>><

>>>:

if < k, v0 >2 H
pre

then

H
post

= H
pre

� < k, v0 >; return(v0)

otherwise

H
post

= H
pre

+ < k, v >; return(?)

H
pre

is the state of the hash table before the access and
H

post

denotes the state after the access.
In a concurrent setting, we require the hash table to be

linearizable [23]. Informally, this means that the operations
are atomic and appear to be executed at a point in time
between the start and end of the operation. Linearizability
is composable which allows us to correctly use the hash-table
to implement other concurrent objects. In particular, this
ensures that MPI calls take e↵ect in program order.

Message delivery is implemented in two ways: eager or
rendezvous protocol. Eager protocol is used for short mes-
sages: The message header and content are copied into a
packet that is delivered to the network. The Send operation
returns immediately as the send bu↵er can be reused. This
protocol becomes ine�cient when message size gets large.
When this is the case, we switch to the rendezvous proto-
col in which the data is delivered directly from the source
bu↵er to the target bu↵er by the NIC, thus saving extra
copies. The rendezvous protocol requires additional mes-
sages to exchange control data and signal completion.

We describe below the eager protocol for blocking sends
and receives. The protocol for nonblocking communication
is similar, except that the receiving ULT may block (yield)
when executing the Wait operation, rather than at the Send.

2.3.1 Eager protocol
The pseudocode for eager protocol is listed in Algorithm

1 and 2 for worker and communication server respectively.
An eager send returns immediately, since the content of the

Algorithm 1 Eager-message send/recv for thread

1: procedure Send-Eager(b, s, k) . : bu↵er, size,
key=<dest,tag>

2: p = pkpool.alloc()
3: Set packet header p.h to k
4: Copy b to p.b
5: Post p to network.
6: end procedure
7:
8: procedure Recv-Eager(b, s, k) . : bu↵er, size, key

=<from, tag>
9: Create a request v = (b, s, t) . bu↵er, size, thread id
10: v0 = H.access(k, v)
11: if v0 6= ? then . :match found
12: Copy v0.p.b to b . : message arrived, copy data.
13: pkpool.free(v0.p)
14: else . : insertion success
15: ThreadWait() . : message not arrived, wait.
16: end if
17: end procedure

Algorithm 2 Eager-message packet handler for communi-
cation server

1: procedure Recv-Eager-Packet(p)
2: v0 = H.access(p.k, p.v)
3: if v0 6= ? then . :match found.
4: Copy p.b to v0.b . : message arrived, copy data.
5: ThreadSignal(v0.t) . : mark receiver as

runnable
6: pkpool.free(p)
7: else . : insertion success.
8: return . : message not arrived, nothing to do.
9: end if
10: end procedure

data is copied over to a packet for transferring. Only the
receiving algorithm needs some elaboration.

A pair of an arriving message and a matching receive
causes two accesses to the hash table by the communica-
tion server; one for the arriving message and one by the
worker thread for the posted receive. The first of these two
operations inserts an entry in the table; the second deletes
the entry, copies the data to the receive bu↵er and frees the
packet. If the worker thread comes first, it will yield and will
be marked runnable by the communication thread when the
receive completes. If it comes second, it will complete the
operation immediately.

Our matching mechanism requires to perform at most
one operation on each of the three shared data structures.
Therefore, the software communication overhead is bounded
by a constant as long as these operations take constant time.

2.3.2 Rendezvous protocol
A rendezvous protocol usually involves the exchange of

two control messages: a RTS (ready-to-send) issued by the
sending worker thread, and RTR (ready-to-receive) issued
by the receiver, after which data is sent. The data transfer
can be supported e�ciently using the Remote Direct Mem-
ory Access (RDMA) feature of modern NICs [26].

Since we do not support wildcards, RTS control message
can be avoided: The receiver can send the RTR message

when the receive is posted. The protocol is analogous to the
eager-protocol, with roles reversed: The sender posts the
RTS in the local hash table, and the communication server
on the sender side posts the arriving RTR in that hash table.
The second post results in a match and the RDMA transfer
is initiated by the thread that made this second post. The
communication servers on each side will mark the communi-
cating ULTs as runnable when the RDMA completes. The
RTR message carry bu↵er length information so that the
sender can check for overflow.

3. RUNTIME IMPLEMENTATION AND OP-
TIMIZATION

3.1 Concurrent Hash-Table
We use a chained hash table with linked lists. The imple-

mentation is optimized for the limited usage we need.
Firstly, we can a↵ord a spinlock per bucket, i.e., using

an atomic boolean flag as a ticket to the critical section.
This is a viable option since, given no collisions, there are at
most two concurrent accesses per bucket by the communi-
cation server and a worker. Collisions can be minimized by
matching the size of the hash table to the expected number
of concurrent communications. A lock-free implementation
(using Compare-And-Swap) is possible but it results in a
more complex and time consuming code, thus we did not
pursue this approach.

Secondly, in order to improve cache locality, we design
each linked list element as a 4-entry array. Each entry con-
sists of two 64-bit words. One of the entries is used as a
control entry and the others are data entry. The control
entry has the atomic flag for spin locking coupled with a
64-bit pointer to the next slot, in case one bucket contains
more than three entries. A data entry consists of two 64-bit
words of the key-value pair. The total size (64-bytes) thus
typically fits in a cache line and one cache miss is the cost of
both locking the bucket and fetching the data in the same
cache line.

With the above optimization, the access operation ex-
pects one cache miss.

3.2 Thread scheduler
The thread scheduler needs to support the two opera-

tions ThreadWait and ThreadSignal. We designed a spe-
cial thread scheduler (Fult) to optimize for these two op-
erations. We compare this scheduler to the schedulers in
the POSIX Thread library and in Argobots, a system that
supports ULTs [39].

In Pthread and Argobots, the two operations are imple-
mented using a condition variable with a Boolean flag, a
generic container for many synchronization primitives. This
typically requires a mutex and a queue to store waiting
threads. An alternative is to use a busy-waiting synchroniza-
tion flag that has lower latency; however this is not scalable
since the processor spends useless time polling. Since Ar-
gobots implements ULT, its context-switching mechanism
is similar to ours.

In Fult, we use a bit-vector to indicate runnable threads,
instead of a queue structure. When a worker is created, it
is assigned a unique worker id, denoted as !. When a ULT
starts running on the worker, it is also assigned an unique id
�. A pair (!,�) uniquely defines a ULT in the system at a

point in time. Since ULTs do not migrate, we can maintain
a separate bit-vector for each worker; � is the index in the
bit-vector structure for the bit indicating the status of the
corresponding ULT (runnable vs. running/blocked).

Algorithm 3 further describes the bit-vector scheduler.

Algorithm 3 Thread scheduler using bit-vectors

1: procedure Scheduling(!, V) . worker, bit-vectors
2: while !!.stop do . loop until user ask to stop
3: for word in V do
4: if word 6= 0 then
5: localWord = 0
6: AtomicExchg(word, localWord)
7: while localWord 6= 0 do
8: b =Leadingbit(localWord)
9: localWord = FlipBit(localWord, b)
10: ContextSwitch(b)
11: end while
12: end if
13: end for
14: end while
15: end procedure

In contrast to the 1-thread granularity of the queue struc-
ture, Fult scheduler works at 64-threads granularity. By
using an atomic exchange instruction to swap the relevant
word to a local variable, we are able to continuously perform
read/write from/to this variable without accessing the main
memory. An improvement in the instruction set (for exam-
ple read-modify-write at the bit-level) could further improve
this implementation.

A ULT executing a ThreadWait will invoke the scheduling
code. The scheduler then looks for a new runnable ULT.
ThreadSignal is a single atomic bit-set instruction (e.g.,
lock bts in x86). To facilitate more general functional-
ity, we also implement a ThreadYield, which is simply a
ThreadWait following by a ThreadSignal on self.

The implementation requires the worker to iterate over
the bit-vectors word by word to find a runnable ULT. This
is e�cient for up to 512 threads per worker, since 8⇥ 64-
bit words still fit in a cache line. To support even more
threads, we use a hierarchical bit-vector structure. More
specifically, we use first level bit-vectors as “hint” to index
into the second level bit-vectors. That is, each bit in the
top-level bit-vectors indicates which bit-vector at the next
level may have a bit on. A ThreadSignal performs a bit-set
first into the lowest level then the higher one. On the other
hand, the scheduler finds a thread by first looking at the
top level then down to a lower level. The idea is similar to
Bloom Filter technique [8], a query to the higher bit-vectors
returns “possibly set” or “definitely not set” (or being set)
for a lower bit-vectors.

If bit-vectors have s1 bits at the top level and s2 bits at
the lower level, then the total number of threads we can
support is s1 ⇥ s2. We can choose s1 = s2 = 512 to fit
each bit-vectors group in a cache line. Hence, a maximum
of 256K concurrent ULTs per worker is supported.

Although fairness could be an issue, our scheduler main-
tains the property of progress. If a ULT is marked as runnable,
it eventually will be scheduled in a bounded number of steps.
To show that this is true, consider the atomic exchange as
taking a snapshot of the global state. In this snapshot, if a

2

1

4’

45’

2’

1’

3

Pool

Server

NIC

Thread

Figure 2: Packet life cycle. (1, 2) A worker sending data
obtains a packet from the pool, fills the packet and submits
to the NIC; (1’, 2’) Communication server obtains a packet
for receiving data and posts the packet to the NIC; (3) The
server polls the NIC and obtains the packet back (either
sent (yellow) or received (gray) packet). (4) If the packet
was for sending, it is returned to the pool (yellow); If the
packet was for an incoming send and there is a match, the
server copies the data and returns the packet to the pool
(blue); (4’) If the packet is for an incoming send and the
there is no match, the packet is inserted to the hash-table
(gray); (5’) Following (4’) - the worker obtains the packet
from the hash-table and copies the data before returning it
to the pool (yellow).

ULT is marked, it will be scheduled after all ULTs having
smaller index are scheduled, which is bounded by the total
length of the bit-vectors.

3.3 Concurrent Packet Pool
In general, the packet pool can be implemented using

a lock-free stack. A pool free is translated to a stack
push, and alloc is translated to a stack pop. At initial-
ization, a fixed number of packets are initialized from the
main memory and pushed onto the stack. The Last-In-
First-Out (LIFO) property allows good temporal locality
for writing/reading to/from the content of a data packet.
In a single-threaded environment this design is su�cient for
good performance, but not with multiple cores. Consider a
packet recently used by a worker and returned to the pool:
This packet could be subsequently obtained by a di↵erent
worker running on a di↵erent core. This causes several cache
misses since the cache line is alternately owned by each of
the two workers. An example is when two threads running
in two di↵erent cores alternatively perform MPI_SEND.

Figure 2 explains how di↵erent components in our system
might change the a�nity of data inside a packet. The fig-
ure shows the life of a packet from the time it leaves the
pool until it is returned. As explained in the figure, when a
packet returns to the pool, it was either last accessed by the
communication server or by one of the workers. However,
the a�nity of a packet to a core is lost once it is posted to
the NIC as a receiving bu↵er since it will be written by the
NIC.

Analyzing the packet life cycle naturally motivates a new
design for the packet pool: split the centralized packet man-
agement into a private pool per worker. Initially, there is a

fixed number of packets for each worker. At runtime, we al-
low moving packets among those pools via resource-stealing,
similar to a non-blocking work-stealing algorithm [5].

A private pool is implemented as a fixed size double-
ended queue (deque). The deque has three main operations:
popTop, pushTop, and popBottom which allows LIFO access-
ing at one end and removing items from the other end. The
packets at the bottom of the deque have been least recently
used and are better candidates for use by threads other than
the local worker. We use popTop for sending packets, and
popBottom for receiving packets (used by the NIC) and for
packet stealing (used by other workers). In case its pri-
vate pool is empty, a thread steals packets from a randomly
choosen private pool. Currently, we implement the pool us-
ing a simple ring-bu↵er and a spinlock.

We expect the pool operations to require at worst 3–5
memory accesses: lock, top, bottom and bu↵er pointers ac-
cesses; a memory read/write for storing a value into the
container; and in the rare case of resource stealing, there
could be more due to cache misses between processors

4. PERFORMANCE EVALUATION

4.1 Experimental Setup
All of our experiments are done on the Stampede cluster

[2] at TACC. The cluster nodes are Intel Sandybridge x86 64
processors with Xeon Dual eight-core sockets, operating at
2.70 GHz, with 32 GB RAM. Each node is equipped with a
MT4099 Infiniband FDR ConnectX interface that is capable
of delivering 54 Gbps. The cluster runs MVAPICH2 MPI
version 2.1, compiled with gcc version 4.9.1. All our codes
were compiled with mpicc using gcc version 4.9.1 with -O3
optimization. Unless noted otherwise, the configuration for
MVAPICH2 is the default setting with shared memory op-
timization when running multiple MPI processes per node;
when using with POSIX threads, MPI_THREAD_MULTIPLE and
shared memory optimization are enabled. In both cases,
thread a�nity is also enabled.

4.2 Component overheads
In this section we evaluate our implementation of each in-

dividual component. Understanding them individually gives
us an idea on the minimum cost of the overall system.

4.2.1 Concurrent Hash-Table
We measure the latency of hash-table operations in the

two following scenarios, performing them with multiple POSIX
threads:

• A thread performs an access when there is no item
with the same key, which inserts the entry into the
hash-table.

• A thread performs an access when there is already an
item with that key, which deletes the entry from the
hash-table.

To justify the benefit of customization, we compare perfor-
mance to two popular general purposes hash-tables: libcuckoo
implementing cuckoo hashing (ch) [29], and TBB concurrent
hashmap (tbb) [37]. We ran the experiments 1000 times,
each time a thread performs 256 operations. Between each
run, we also perform a cache invalidation.

Figure 3 shows the result of our experiments for latency
per operation. Both TBB concurrent hash map and libcuckoo
show inconsistent latency when there are more concurrent
threads, which is the result of conflicts. Our hash-table per-
forms much better, with an overhead that is almost always
as low as 0.05 usec; the execution time has a low variance
and is almost independent of the number of threads.

4.2.2 Thread scheduler

POSIX thread Argobots Fult
Scheduling 0.75 0.08 0.02
Signal 1.15 0.30 0.01
Total 1.90 0.38 0.03

Table 1: Break down of thread scheduler overheads, shown
in usec.

To evaluate the thread scheduler overhead, we measure
separately the two operations: 1) How fast can a ULT be
scheduled by performing a sequence of yields at a worker
and 2) The cost of a ThreadSignal by repeatedly issuing
the signal on a worker for a ULT at another worker. Ta-
ble 1 shows our results averaged over 1000 runs. Our cus-
tomized scheduler achieves a total cost of 0.3 usec, for Sig-
nal+Yield, about 10⇥ better than Argobots and 60⇥ better
than POSIX threads.

4.2.3 Concurrent Packet Pool
The overhead of packet pool operations is measured as

the sum of the latency of an alloc and a free operation.
We evaluate this quantity by performing a random number
of alloc calls followed by the same number of free calls
on each thread. To better match with a real workload, we
also perform a random sleep in between the two groups of
operations. The number of packets allocated per thread is
always smaller than the total number of packets divided by
the number of threads.

The result is shown in Figure 4, in comparison with imple-
mentation using a concurrent lock-free stack and a lock-free
queue. Our result for this benchmark outperforms others
by a wide margin, especially when the number of threads
increases. The lock-free stack is faster than the queue for
a single thread, however performs worse for more than two
threads since there is contention at the top of the stack.
The great variation in latency per operation of a centralized
pool is clearly due to memory conflicts in this type of access
patterns. Our latency is consistently in the range of 0.1 to
0.15 usec.

4.3 Microbenchmarks and Application Eval-
uation

In the previous section, we have analyzed our critical path
by evaluating each individual component independently. Their
latencies are added to the data movement overhead. In the
tested system, the overall number that we achieve is 0.2–
0.25 usec. More importantly, we are able to maintain this
performance with an increasing number of workers. In this
section, we evaluate how they work together by using a set
of microbenchmarks and applications.

Table 2 shows the di↵erent configurations that we eval-
uate. For MVAPICH2, we evaluate single threaded mode
(mvapich2); single threaded mode with asynchronous progress

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

N Threads

L
at
en

cy
(u
se
c)

arr
ch
tbb

(a) Latency per successful access.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

N Threads

L
at
en

cy
(u
se
c)

arr
ch
tbb

(b) Latency per failed access.

Figure 3: Latency of our hash-table implementation (arr) in comparison to libcuckoo (ch) and tbb concurrent hash map (tbb).
Each hash table is created with the initial size of 216, the number of insertion per thread is chosen so that there is enough
room and no expansion is required. TBB is also compiled with tbb-malloc to improve performance. Latencies exceeding 0.5
microseconds are not shown.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

N Threads

L
at
en

cy
(u
se
c)

us
stack
queue

Figure 4: Latency of pool implementation vs. a lock-free
pool and a lock-free queue implementation. Latencies higher
than 1 microsecond are not shown.

thread, i.e., MPICH_ASYNC_PROGRESS=1
(mvapich2+async); and multi-threaded mode (mvapich2+mt).
Using an asynchronous progress thread reduces performance
significantly for mvapich2+mt or when there are more pro-
cesses per node, thus this option is not considered for those
cases. For our implementation, we evaluate three di↵er-
ent schedulers: POSIX Thread (pthread+hash), Argobots
(abt+hash) and Fult (fult+hash).

4.3.1 OSU latency benchmarks
We use the OSU benchmarks [14] to evaluate the latency

per MPI_SEND or MPI_RECV. The single threaded test is per-
formed using osu_latency, the multi-threaded test is per-
formed with osu_latency_mt. For a fair comparison in this
experiment, we disable the MVAPICH2 RDMA fast path al-
gorithms (by setting MV2_USE_RDMA_FAST_PATH=0) [30]. Fur-
ther, in multi-threaded tests, we modify the code so that
each thread uses di↵erent tags.

In order to evaluate the e↵ect of cache conflicts between

Msg Matching Scheduler
mvapich2 queues Single
mvapich2+async queues Single + Progress
mvapich2+mt queues POSIX thread
pthread+hash hash-table POSIX thread
abt+hash hash-table Argobots
fult+hash hash-table Fult

Table 2: Summary of MPI configurations used in the evalu-
ation.

computation code and communication code, we also create
another test by modifying osu_latency to add a number
of random writes in between MPI_RECV and MPI_SEND. The
random writes are uniformly distributed accross an array
of 1GB size, thus eventually invalidate all the caches. The
reported overhead is the overall time less the computation
time measured when executing without communication.

Performance results for the multi-threaded tests are shown
in Figure 5. The largest improvement in performance is due
to the replacement of the matching queues of MPI with the
hash table. Then, the replacement of POSIX threads with
light-weight threads. Our thread-scheduler improves the la-
tency up to 40% compared to Argobots, 3⇥ compared to
POSIX thread scheduler. Overall, we achieve speedup of up
to 60⇥ compared to MVAPICH2. The typical communica-
tion overhead for MVAPICH2 with a single-threaded process
is less than 2 usecs; with 8 threads, the overhead is close to
100 usecs due to synchronization overheads

Our scaling test in Figure 5(b) shows that we can support
a very large number of threads with very small synchro-
nization overheads. Our performance only degrades slowly
at 16K communicating threads, which we attribute to the
bottlenecks in memory for thread records (each thread is
configured with a 16KB stack for this test).

Performance for the original OSU single-threaded test is
shown in Figure 6(a). With our best implementation, we
have lower latency than MVAPICH2 running with MPI_-

21 23 25 27 29 211 213

2

8

32

128

95.2

4.15

2.01
1.5

Message Size (byte)

L
at
en

cy
(u
se
c)

mvapich2+mt

pthread+hash

abt+hash

fult+hash

(a) Latency per message transfer for 8 threads, one
per worker/core.

23 25 27 29 211 213 215 217 219 221

2

4

8

16

32

7.9

2.3
1.7

18.8

N threads

L
at
en

cy
(u
se
c)

pthread+hash

abt+hash

fult+hash

(b) Latency for 64-byte message transfer with up
to 1M ULTs that are assigned round-robin to 14
worker/cores, pthread+hash version only works up
to 16K threads.

Figure 5: Latency comparison between di↵erent MPI implementation using OSU multi-threaded latency test.

THREAD_MULTIPLE for small messages (as in mvapich2+mt)
and virtually tie with MVAPICH2 running with MPI_THREAD_-
SINGLE (as in mvapich2).

Performance for the modified OSU single-threaded test is
shown in Figure 6(b). At 2048 random writes, we can ob-
serve that the performance starts to be a↵ected by cache
e↵ects; only the single-threaded MVAPICH2 still performs
well. Nevertheless, our best implementation still outper-
forms MVAPICH2 under MPI_THREAD_MULTIPLE. Note that
the slow-down can be due to a slower execution of the com-
munication code as well as to a slower execution of the
writes.

The comparison to MVAPICH2 is not entirely fair, since
we do not support the long list of arguments and the many
options for these arguments that MVAPICH has to support.
However, the processing of the arguments of an MPI call is
done independently by the calling thread; it does not re-
sult in synchronization overheads, and equally a↵ect MPI_-
THREAD_SINGLE and MPI_THREAD_MULTIPLE. Our results in-
dicate that we can support MPI_THREAD_MULTIPLE with a
very small penalty, if any, compared to MPI_THREAD_SINGLE;
and that still holds true even with 16K light-weight threads.

4.3.2 NAS Parallel Benchmarks - Data Traffic (DT)
The Data Tra�c (DT) code is part of the NAS Paral-

lel Benchmarks. It is used to evaluate the communication
performance under three di↵erent communication patterns:

• Black Hole (BH): collects data from multiple sources
to a single sink.

• White Hole (WH): distributes data from a single source
to multiple sinks.

• Shu✏e (SH): routes data from a small number of sources
to a small number of sinks through a large numbers of
layers.

Between communication phases, there are also significant
computations to verify results that help evaluate the ability

to overlap communication and computation of the runtime
system as well as the e↵ect of cache locality. The appli-
cation is written with MPI blocking send and receive and
each destination rank has a uniquely assigned tag, making
it a perfect use case for our MPI implementation. Hence,
for this experiment, we execute the reference code using our
MPI implementation without changing much of the source
nor applying any threading. Since no threading is used,
we run the benchmark on 128 nodes, one process per node,
two cores per process. Our implementation uses a single
worker in comparison with MVAPICH2 in sequential mode
and MVAPICH2 with asynchronous progress.

The NBP suite also provides di↵erent classes of problem
which represents di↵erent levels of scale. For the DT bench-
mark, we evaluate only class “A” since it is reasonably large
(requires at least 80 processes), and moreover it is equipped
with a proper verification. The reference code was down-
loaded from NBP suite version 3.3.1 at the NBP website
[36].

The results are shown in Figure 7. When there is a imbal-
ance in the number of sources and sinks, we perform better
in all cases, with up to 3⇥ performance due to a better mes-
sage matching algorithms. We are about 15% slower in the
SH case, due to more cache conflicts. The mvapich2+async
also reduces performance for the same reason, although since
the network is polled from both the main thread and the
helper threads, it is less e↵ected (average L2 cache misses
rate are 23%, 28% and 45% for mvapich2, mvapich2+async
and fult+hash respectively as reported by the perf profiler).

4.3.3 Breadth-first-search (BFS)
BFS is the kernel for the Graph500 benchmark [1], which

is frequently used to determine the performance of super-
computers for latency bound applications. The MPI refer-
ence implementation generates a large-scale graph and as-
signs to each MPI process a fixed set of vertices. The imple-
mentation then has the processes cooperatively traverse the
graph, starting from a particular vertex until all vertices are
marked visited. Although the problem is simple, it is often

21 23 25 27 29 211 213
20

21

22

23

24

25

26

1.5

3.6
1.8

1.4

22

Message Size (byte)

L
at
en

cy
(u
se
c)

mvapich2+mt

pthread+hash

abt+hash

fult+hash

mvapich2

mvapich2+async

(a) Latency comparison for single-threaded OSU la-
tency test.

21 24 27 210 213 216

1

2

3

4

5

6

Number of random writes

O
ve
rh
ea
d
s
(u
se
c)

mvapich2+mt

pthread+hash

abt+hash

fult+hash

mvapich2

(b) Latency comparison for 64-byte single-threaded
OSU latency test with increasing number of writes.

Figure 6: Latency comparison for single-threaded OSU benchmarks

BH WH SH

0

100

200

300

400

500

27

191

459

39

179

438

78

261

380

78

265

385

78

263

388

Problem Set

M
op

/s
(t
ot
al
)

mvapich2

mvapich2+async

pthread+hash

abt+hash

fult+hash

Figure 7: Performance of NAS-DT benchmarks in terms of
million operations per second (Mop/s - the higher the better)
for three di↵erent communication patterns under di↵erent
MPI implementations.

di�cult to scale well due to the irregular access patterns
and fine-grain communication. The benchmark provides
four MPI reference BFS implementations. Among them,
graph500_bfs_simple is a suitable candidate for us to re-
implement since it uses MPI 2-sided point-to-point as the
main communication method. Although this implementa-
tion has limited scalability, it is also simple to understand
and is a frequent target of study. Jose et al. [27] point out
that one of the main bottlenecks of this implementation is
due to the Send/Recv communication model, which uses
non-blocking communication to poll for arriving messages.
We attempt to provide a simple remedy for this bottleneck
by using blocking Send/Recv in combination with multi-
threading. More specifically, we have made the following
two important changes:

First, each MPI process traverses its assigned graph par-
tition using multiple processing threads: Each vertex that
is assigned to an MPI process is now further assigned to a
thread spawned by that process. Each thread also maintains

a separate traversing queue and appends to this queue when
it traverses vertices that it owns, otherwise, it atomically
appends to the queue of the owner threads. For this reason,
in our modification, we use all the cores of a compute node
within one MPI process, while the reference uses one MPI
process per core.

Second, when a vertex is owned by a remote process, the
communication is done via blocking MPI_SEND and MPI_-
RECV instead of their non-blocking counterpart. A thread
performs an MPI_SEND when it has accumulated enough ver-
tices owned by the destination. The MPI_RECV is performed
in a separate set of threads. These threads are spawned ini-
tially and only scheduled when a message has arrived. The
woken up thread finds vertices that belong to the current
MPI rank in the receive bu↵er, and appends them to the
corresponding local thread queues; the appends are atomic.
The non-blocking receive in the reference implementation
uses MPI_ANY_SOURCE. Here we apply one of our mitigation
strategies by having the number of receiving threads equal
to the number of sending nodes.

Although this design could lead to a large number of
threads, the receiving threads are not running when there
is no incoming message, hence we do not waste CPU times
as in the original algorithm. Moreover, our runtime is able
to handle a very large number of threads e�ciently as we
have shown in the previous section. However, we admit
that when the memory for storing thread records becomes
the bottleneck, one must come up with a more sophisticated
approach.

We compare our multi-threaded implementation with 15
workers and 1 communication server with the reference run-
ning 16 processes per node; other settings are kept as the
default. The weak and strong scaling results of computed
median TEPS are provided in Figure 8. We do not show the
result for pthread+hash since the performance is far worse
(10⇥ slower than the reference). This is expected since the
performance of our threaded version depends on the ability
to context-switch e�ciently between receiving threads and
processing threads which happens very frequently in BFS
due to the fine granularity of the communication. Our im-
plementation using out ULT scheduler is able to scale BFS

256 512 1,024 2,048 4,096

1e+9

2e+9

3e+9

Number of PEs

T
E
P
S

abt+hash

fult+hash

mvapich2

(a) Strong scaling on 29-scale graph.

25 26 27 28

1e+9

2e+9

3e+9

Scale

T
E
P
S

abt+hash

fult+hash

mvapich2

(b) Weak scaling with 512 PE per 25-scale graph
(4096 cores at 28-scale)

Figure 8: Strong and Weak scaling for Graph500 in terms of number of Traversed Edges per Second (TEPS - the higher the
better) for di↵erent MPI implementation.

to 4096 cores. At that scale, our Fult scheduler achieves 3⇥
performance over the reference code and 20% better than
Argobots.

4.3.4 Unbalanced Tree Search (UTS)
Unbalanced Tree Search is a benchmark for evaluating the

performance of parallel systems under heavily unbalanced
and irregular workloads [34]. The benchmark randomly gen-
erates a tree based on sampling from configured probability
distribution and requires traversing every generated vertex.
Unlike Graph500, an MPI work-stealing implementation is
considered quite scalable and has been used for evaluating
other runtime systems [11, 15, 33]. The basic idea is that an
MPI process sends stealing requests to other MPI processes
when it has explored all previously assigned vertices. All
communications are done via non-blocking point-to-point
MPI calls. The application is less communication bound
than the Graph500 BFS, but requires dynamic coordination
between the processes for balancing works.

We obtained the latest reference implementation (version
1.1) from the publicly available source at [3] and modi-
fied the work-stealing MPI code (mpi_workstealing.c) to
match our MPI implementation. The modifications are in a
similar style as those for Graph500: 1) Use multiple threads
for each MPI process and allow each thread to explore in
parallel multiple vertices in their own stack. When there
are no more vertices to explore, the thread will first try to
steal from other threads’ stacks on the same node before
trying to request work from a di↵erent MPI process. We
make little e↵ort to optimize the intra-process stealing and
use locks to protect critical sections. 2) The reference im-
plementation uses non-blocking communication to wait for
work (incoming vertices or incoming stealing requests). In-
stead, we use multiple communicating threads. Each thread
uses a blocking MPI_RECV and then acts upon the data it
received.

We compare our multi-threaded implementation with 15
workers and 1 communication server with the reference run-
ning 16 processes per node; other settings are kept as the
default. The strong scaling result is shown in Figure 9 for
T3XXL tree (a 2.8 billion vertices, Binomial tree that is rec-

64 128 256 512 1,024 2,048 4,096

226

227

228

229

230

Number of cores

ve
rt
ic
es
/s
ec
on

d

pthread+hash

abt+hash

fult+hash

mvapich2

Figure 9: Strong scaling results for UTS of T3XXL tree in
terms of vertices per second (the higher the better) under
di↵erent MPI implementations.

ommended by the package). Our implementation is 10⇥
faster than the original code, 7⇥ than with POSIX thread
scheduler and 10% better than with Argobots at 4096 cores.

5. RELATED WORKS
Although MPI is still the de-facto programming model in

High Performance and Scientific Computing, there is a great
deal of research in new programming models as we start to
think about exascale. A common theme of these new mod-
els are the ability to support intra-node parallelism using
multi-tasking or fork-join models [21], coupled with some
form of distributed memory communication. For example,
PPL—a recent programming model developed at University
of Illinois—provides a message-driven, multi-threading run-
time in distributed memory using one-sided communication
and software cache [9]. A survey of modern programming
models and features is also provided in the paper [9]. These
programming models are alternative options for MPI, but
our techniques of implementations are applicable to other
programming models as well.

A common criticism of MPI is its inability to cope with
increasing intra-node parallelism. Our work and the work of
others show that the reason for these criticisms are less due
to the message-passing model but rather to specific choices
in current MPI definition and implementations.

There are several e↵orts to provide and improve multi-
threading support in MPI; we name a few here. MIMPI
[19] and MPICH-MT [41] are early designs and implemen-
tations of thread-safe MPI on distributed memory. Recent
e↵orts from Dózsa [17] and Balaji [6] study the replacement
of MPI coarse-grain lock by fine-grain locks and implement
parallel receive queues using these locks; they demonstrate
improvement in message rate up to 4 threads however it
su↵ers mutex overheads and requires a complex, error-prone
implementation (admitted by the authors). A more in-depth
analysis of locking contention in MPI+Thread can be found
in [4]. Recently, Intel researchers [18] also identified message
matching as an important issue in MPI implementation and
came up with a solution based on a hash-table. Their work
was not focused on multi-threading, and they did not pro-
vide performance results for multi-threading. We shall be
interested in comparing our work with theirs once their code
becomes available.

A di↵erent aproach followed by many projects is to im-
plement MPI processes as threads [25, 43, 12, 38, 28]. This
largely solves the performance issues we discussed, since each
thread has a diferent rank and can have its own private MPI
data structures. On the other hand, this increases the num-
ber of ranks, increases memory usage, and does not sup-
port dynamic thread creation; it is a di↵erent programming
model.

O↵-loading MPI communication or network polling to ded-
icated cores/threads is another theme of research. This ap-
proach is often used when MPI communication is integrated
into a light-weight threading runtime such as Habanero-C
[11], or Qthreads [42]. Liu [31] demonstrates a general ap-
proach to incorporating user-level threading and MPI, giving
di↵erent methods for network polling. We share the polling
mechanism. However, these designs are based on top-down
solutions: adding extra layers atop of MPI and therefore
having higher latency. We believe that once MPI is aware of
concurrent executions and designed with that in mind, many
of these techniques will not be necessary. For example, in
our design, there is no need for an e�cient concurrent queue
(which is more conflict-prone than a hash-table) for passing
requests to the server (which is required by [11]), and there
is no need for calling MPI_PROBE or MPI_TEST as [11, 42, 31].

It is worth mentioning that multi-threaded communica-
tion can be a solution for heavily communication-bound ap-
plications on multi-core clusters. In this approach, multiple
threads or cores are cooperating to execute communication
related codes. USFMPI [10], MT-MPI [40], and pioman [13]
are a few that follow this direction. The technique is orthog-
onal to our work and is useful when more than one commu-
nication server is required to cope with a higher message
injection rate. One must also watch out for performance
degradation when there are too many concurrent messages
in the current NIC architecture, as pointed out by Luo in
[32]. Our packet pool design has already taken that into
account.

6. DISCUSSION
The results in this paper raise two main questions:

1. Are the restrictions we impose on MPI reasonable; or
do they prevent the use of important communication
motifs?

2. Is it possible to relax the restrictions we imposed on
MPI without losing the performance benefits of our
approach?

We address each of these questions in turn.

6.1 MPI Restrictions
Wildcard receives are often used, with MPI_ANY_SOURCE,

in order to handle messages from di↵erent sources in the or-
der they arrive (thus coping with variable arrival times), or
to support the one master, many slaves or one server, many
clients motif in a scalable manner. The main problem in sup-
porting wildcard receives is that they can match any send, so
the matching of sends and receives cannot be split into non-
interfering bins. The implementation problems would vanish
if incoming messages carried an MPI_ANY_SOURCE identifica-
tion – this essentially becomes a special source value that is
used both by sender and by receiver, and matched using our
current logic.

We conjecture that the code logic is such that it is seldom,
if ever, the case that the same send operation is matched
sometimes by a receive with a specific sender value and at
other times by a receive with a wildcard sender value; the
sender“knows”whether the matching receive will use a wild-
card. If so, the proposed approach of“tagging”sent messages
with an MPI_ANY_SOURCE tag matches currently used com-
munication motifs.

The proposed approach can be implemented in MPI, for
example, by having communicators that are always used
with wildcard receives, or using a special tag value at the
sender to indicate a wildcard receive.

The constraint of having each send possibly match only
one receive and each receive possibly match only one send
is less important and can be relaxed without significant
changes in our implementation: We will need to ensure that
concurrent accesses to the same bucket in the hash table
traverse the entries in the bucket in order; an access ei-
ther deletes the first matching entry or appends the new
entry to to the end of the bucket list. Performance will de-
grade when many concurrent communications use the same
<communicator, sender, tag> key, but we conjecture that
such situations are rare and can (and should) be avoided.

We assumed that ULTs do not migrate once they started
executing. ULT migration can be supported: It is essen-
tially equivalent to deleting a bit from one bit vector (mark-
ing tha ULT as not runnable on the source worker); and
inserting a bit into another bit vector (as done when a new
ULT is spawned). The overhead occurs only when ULTs are
migrated—presumably an operation that is less frequent and
has a relatively large overhead.

6.2 Extensions
A full implementation of MPI message passing has to sup-

port datatypes; has to support multiple point-to-point com-
munication modes; and has to handle a variety of special
cases, such as specified by MPI_STATUS_IGNORE or MPI_-
PROC_NULL. Handling these issues increases the latency of
executing sends and receives, but does not require changes
in the basic design outlined in the paper, since it does not
require additional coordination between threads; they will

not worsen the performance of MPI_THREAD_MULTIPLE, as
compared to MPI_THREAD_SINGLE. A possible exception is
the support of MPI_WAITANY, MPI_WAITALL and other similar
calls: The use of such calls break the one-to-one relation be-
tween an incoming message and a waiting thread, and will
require a more complex interaction between the communica-
tion server and the scheduler(s). Handling errors and edge
cases like unmatched bu↵er size costs some cycles, they are
seldom used but required for completeness. We intend to
explore and evaluate these problems in future work.

Our tight integration between the thread scheduler and
the communication layer may be problematic, in practice,
since the thread scheduler needs to interact with other sub-
systems, such as the runtime of the language that is used for
multithreading. The two can be separated—we only require
an e�cient implementation of ThreadWait and ThreadSignal.
Our work indicates the need for standardizing an interface
that supports such functionally with a very low overhead.

Another important extension is to support multiple com-
munication servers in order to support higher message rates.
As long as wildcards are not supported, this does not seem to
raise major issues: For example, the hash table can be split
into distinct hash tables, each handling a distinct range of
key values; each communication server would be associated
with a separate hash table. This, too, will be the subject of
our future work.

6.3 Benchmarks
It would be very desirable to evaluate our design with

full-fledged applications or, to the least, with representative
mini-applications. Unfortunately such e↵ort su↵ers from a
“chicken and egg problem”: Applications do not use MPI_-
THREAD_MULTIPLE, since implementations are ine�cient; and
implementations are not focused on MPI_THREAD_MULTIPLE
since better implementations do not benefit and probably
harm current application codes. We believe that MPI_-
THREAD_FUNNELED is not a su�cient answer for nodes with
hundreds of concurrent hardware threads and for asynchronous
task programming models. One important way of break-
ing this vicious cycle is to demonstrate the benefits of good
MPI_THREAD_MULTIPLE support with mini-apps and full ap-
plications. We hope to be able to do so in the coming years.

7. CONCLUSION
It has become a common wisdom that using MPI_THREAD_-

MULTIPLE is a bad practice. In this paper, we have laid the
foundation for overturning this statement, thus greatly ex-
tending the programmability and usability of MPI toward
future architectures. We showed that using a more restric-
tive model of MPI send-receive, we can design a constant-
time overhead message matching and delivery under highly
concurrent executions without sacrificing performance of se-
quential usage.

Our method is a tight integration of communication layer,
thread scheduler and resource management. Moreover, the
entire protocol relies on only a handful of operations which
could be potentially implemented in hardware. Using a va-
riety of micro- and application- benchmarks, we proved the
e�ciency and performance benefit of this design. The imple-
mentation is able to maintain performance up to a million
communicating threads and scale several applications which
previously shown unscalable, using the same algorithm or
with modest modifications.

Our future work will develop a complete MPI implementa-
tion on top of the existing protocol. While moving bottom-
up, we shall evaluate and quantify the cost and benefit of
generality vs. performance. We shall also study performance
on systems with a large number of physical threads, such as
the Xeon Phi. We believe the insight from this research
will facilitate a discussion on how MPI should evolve in the
upcoming era.

8. ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S.

Department of Energy, O�ce of Science, under contract
number DE-AC02-06CH11357 and by a subcontract from
Sandia National Laboratories. It was performed while the
second author was at the MCS Division of the Argonne Na-
tional Laboratory. We thank Ron Brightwell, Pavan Bal-
aji, Nikoli Dryden and Alex Brooks for their help with this
work.

9. REFERENCES
[1] Graph 500. http://www.graph500.org/. [Online;

accessed 13-May-2016].
[2] TACC Stampede Cluster.

http://www.xsede.org/resources/overview, 2016.
[3] The unbalanced tree search benchmark. https:

//sourceforge.net/projects/uts-benchmark/files/,
2016.

[4] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka.
MPI+threads: Runtime contention and remedies.
ACM SIGPLAN Notices, 50(8):239–248, 2015.

[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton.
Thread scheduling for multiprogrammed
multiprocessors. Theory of Computing Systems,
34(2):115–144, 2001.

[6] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Toward e�cient support for multithreaded
MPI communication. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages
120–129. Springer, 2008.

[7] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and
R. Thakur. Fine-grained multithreading support for
hybrid threaded MPI programming. International
Journal of High Performance Computing Applications,
24(1):49–57, 2010.

[8] B. H. Bloom. Space/time trade-o↵s in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[9] A. Brooks, H.-V. Dang, N. Dryden, and M. Snir. PPL:
an abstract runtime system for hybrid parallel
programming. In Proceedings of the First International
Workshop on Extreme Scale Programming Models and
Middleware, pages 2–9. ACM, 2015.

[10] S. G. Caglar, G. D. Benson, Q. Huang, and C.-W.
Chu. USFMPI: a multi-threaded implementation of
MPI for Linux clusters. In Fifteenth IASTED
International Conference on Parallel and Distributed
Computing and Systems, pages 674–680, 2003.

[11] S. Chatterjee, S. Tasırlar, Z. Budimlic, V. Cave,
M. Chabbi, M. Grossman, V. Sarkar, and Y. Yan.
Integrating asynchronous task parallelism with MPI.
In IEEE 27th International Symposium on Parallel &

Distributed Processing (IPDPS), 2013, pages 712–725.
IEEE, 2013.

[12] E. D. Demaine. A threads-only mpi implementation
for the development of parallel programs. In
Proceedings of the 11th international symposium on
high performance computing systems, pages 153–163.
Citeseer, 1997.

[13] A. Denis. pioman: a pthread-based multithreaded
communication engine. In Parallel, Distributed and
Network-Based Processing (PDP), 2015 23rd
Euromicro International Conference on, pages
155–162. IEEE, 2015.

[14] P. Dhabaleswar. OSU Micro-Benchmarks 5.3.
http://mvapich.cse.ohio-state.edu/benchmarks/, 2016.
[Online; accessed 18-April-2016].

[15] J. Dinan, S. Olivier, G. Sabin, J. Prins,
P. Sadayappan, and C.-W. Tseng. Dynamic load
balancing of unbalanced computations using message
passing. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages
1–8. IEEE, 2007.

[16] J. Dongarra, D. Walker, E. Lusk, B. Knighten,
M. Snir, A. Geist, S. Otto, R. Hempel, E. Lusk,
W. Gropp, et al. MPI: a message-passing interface
standard. International Journal of Supercomputer
Applications and High Performance Computing,
8(3-4):165, 1994.

[17] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas,
D. Goodell, W. Gropp, J. Ratterman, and R. Thakur.
Enabling concurrent multithreaded MPI
communication on multicore petascale systems. In
Recent Advances in the Message Passing Interface,
pages 11–20. Springer, 2010.

[18] M. Flajslik, J. Dinan, and K. D. Underwood.
Mitigating MPI message matching misery. In
International Supercomputing Conference, 2016.

[19] F. Garćıa, A. Calderón, and J. Carretero. Mimpi: A
multithread-safe implementation of mpi. In European
Parallel Virtual Machine/Message Passing Interface
UsersâĂŹ Group Meeting, pages 207–214. Springer,
1999.

[20] A. Geist, W. Gropp, S. Huss-Lederman,
A. Lumsdaine, E. Lusk, W. Saphir, T. Skjellum, and
M. Snir. MPI-2: Extending the message-passing
interface. In Euro-Par’96 Parallel Processing, pages
128–135. Springer, 1996.

[21] W. Gropp and M. Snir. Programming for exascale
computers. Computing in Science & Engineering,
15(6):27–35, 2013.

[22] W. Gropp and R. Thakur. Issues in developing a
thread-safe MPI implementation. In Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, pages 12–21. Springer, 2006.

[23] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[24] C. A. R. Hoare. Communicating sequential processes.
Springer, 1978.

[25] C. Huang, O. Lawlor, and L. V. Kale. Adaptive mpi.
In International workshop on languages and compilers
for parallel computing, pages 306–322. Springer, 2003.

[26] W. Huang, G. Santhanaraman, H.-W. Jin, Q. Gao,
and D. K. Panda. Design of high performance
MVAPICH2: MPI2 over InfiniBand. In Sixth IEEE
International Symposium on Cluster Computing and
the Grid (CCGRID 06), volume 1, pages 43–48. IEEE,
2006.

[27] J. Jose, S. Potluri, K. Tomko, and D. K. Panda.
Designing scalable Graph500 benchmark with hybrid
MPI+OpenSHMEM programming models. In
Supercomputing, pages 109–124. Springer, 2013.

[28] H. Kamal and A. Wagner. Fg-mpi: Fine-grain mpi for
multicore and clusters. In Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, pages 1–8.
IEEE, 2010.

[29] X. Li, D. G. Andersen, M. Kaminsky, and M. J.
Freedman. Algorithmic improvements for fast
concurrent cuckoo hashing. In Proceedings of the
Ninth European Conference on Computer Systems,
page 27. ACM, 2014.

[30] J. Liu, J. Wu, and D. K. Panda. High performance
RDMA-based MPI implementation over InfiniBand.
International Journal of Parallel Programming,
32(3):167–198, 2004.

[31] H. Lu, S. Seo, and P. Balaji. MPI+ ULT: Overlapping
communication and computation with user-level
threads. In High Performance Computing and
Communications (HPCC), 2015 IEEE 17th
International Conference on, pages 444–454. IEEE,
2015.

[32] M. Luo, D. K. Panda, K. Z. Ibrahim, and C. Iancu.
Congestion avoidance on manycore high performance
computing systems. In Proceedings of the 26th ACM
international conference on Supercomputing, pages
121–132. ACM, 2012.

[33] R. Machado, C. Lojewski, S. Abreu, and F.-J.
Pfreundt. Unbalanced tree search on a manycore
system using the GPI programming model. Computer
Science-Research and Development, 26(3-4):229–236,
2011.

[34] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan,
P. Sadayappan, and C.-W. Tseng. UTS: An
unbalanced tree search benchmark. In Languages and
Compilers for Parallel Computing, pages 235–250.
Springer, 2006.

[35] Message Passing Interface Forum. MPI 4.0
Standardization E↵ort, Point to Point
Communication. https://svn.mpi-forum.org/trac/
mpi-forum-web/wiki/PtpWikiPage. [Online; accessed
6-May-2016].

[36] NASA. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html,
2016.

[37] C. Pheatt. Intel R� threading building blocks. Journal
of Computing Sciences in Colleges, 23(4):298–298,
2008.

[38] E. R. Rodrigues, P. O. A. Navaux, J. Panetta, and
C. L. Mendes. A new technique for data privatization
in user-level threads and its use in parallel
applications. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages
2149–2154, New York, NY, USA, 2010. ACM.

[39] S. Seo, A. Amer, P. Balaji, P. Beckman, C. Bordage,
G. Bosilca, A. Brooks, A. CastellÃş, D. Genet,
T. Herault, P. Jindal, L. V. Kale, S. Krishnamoorthy,
J. Li✏ander, H. Lu, E. Meneses, M. Snir, and Y. Sun.
Argobots: A lightweight low-level threading/tasking
framework. Technical Report ANL/MCS-P5515-0116,
2016.

[40] M. Si, A. J. Peña, P. Balaji, M. Takagi, and
Y. Ishikawa. MT-MPI: Multithreaded MPI for
many-core environments. In Proceedings of the 28th
ACM international conference on Supercomputing,
pages 125–134. ACM, 2014.

[41] A. Skjellum, B. Protopopov, and S. Hebert. A thread
taxonomy for mpi. In MPI Developer’s Conference,
1996. Proceedings., Second, pages 50–57. IEEE, 1996.

[42] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier,
K. T. Pedretti, and C. T. Vaughan. Early experiences
co-scheduling work and communication tasks for
hybrid MPI+X applications. In Proceedings of the
2014 Workshop on Exascale MPI, pages 9–19. IEEE
Press, 2014.

[43] H. Tang, K. Shen, and T. Yang. Compile/run-time
support for threaded mpi execution on
multiprogrammed shared memory machines. In ACM
SIGPLAN Notices, volume 34, pages 107–118. ACM,
1999.

[44] The Open MPI Project. Is Open MPI thread safe.
shttps://www.open-mpi.org/faq/?category=
supported-systems#thread-support, 2016. [Online;
accessed 8-May-2016].

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, under contract number DEAC0206CH11357.
The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DEAC02 06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

	

